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A B S T R A C T

Systematic maps of urban forests are useful for regional planners and ecologists to understand the spatial
distribution of trees in cities. However, manually-created urban forest inventories are expensive and time-
consuming to create and typically do not provide coverage of private land. Toward the goal of automating
urban forest inventory through machine learning techniques, we performed a comparative study of methods
for automatically detecting and localizing trees in multispectral aerial imagery of urban environments, and
introduce a novel method based on convolutional neural network regression. Our evaluation is supported by a
new dataset of over 1,500 images and almost 100,000 tree annotations, covering eight cities, six climate zones,
and three image capture years. Our method outperforms previous methods, achieving 73.6% precision and
73.3% recall when trained and tested in Southern California, and 76.5% precision 72.0% recall when trained
and tested across the entire state. To demonstrate the scalability of the technique, we produced the first map
of trees across the entire urban forest of California. The map we produced provides important data for the
planning and management of California’s urban forest, and establishes a proven methodology for potentially
producing similar maps nationally and globally in the future.
1. Introduction

Urban forests provide extensive benefits to residents of cities such
as contributing to resident energy-savings, reducing impervious runoff
and water quality, controlling microclimate, and sequestering car-
bon (McPherson and Simpson, 2002; McPherson et al., 2016; Livesley
et al., 2016). City, state, or county governments manage the public
section in order to estimate and maximize those benefits and make
sure they are equitably distributed throughout a city. Governments
typically track their urban forests through manual tree inventories
performed by professional arborists (Nielsen et al., 2014). However,
such inventories are typically limited to information about public street
trees, which make up only a portion of a city’s urban forest. The extent
of the benefits provided to residents by their urban trees depends
on the number of trees in that city, both public and private. When
making policy decisions about where the next tree planting is needed
most, cities need to be able to account for both the publicly and
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privately managed urban forest in order to target plantings. Automatic
tree detection implemented using machine learning and aerial imagery
provides a method for cities to efficiently and cost-effectively track their
urban forests.

Tree detection methods can be divided into two categories: methods
that operate on LiDAR-derived products such as a canopy height model
(CHM) (Chen and Zakhor, 2009; Silva et al., 2016; Liu et al., 2015; Wu
et al., 2016; Zörner et al., 2018; Roussel et al., 2020; Xu et al., 2021;
Münzinger et al., 2022) or a 3D point cloud (Ayrey and Hayes, 2018;
Chen et al., 2021), and methods that operate solely on optical imagery.
The geometric information obtained from LiDAR is highly useful for
tree detection. However, LiDAR is expensive to collect, and there is
currently no source for high-resolution LiDAR data for much of the
Earth, unlike high-resolution multi-spectral imagery, for which multiple
sources exist.
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The advantages of using optical, multispectral imagery are that it is
collected everywhere in the United States as part of the U.S. National
Agricultural Imagery Program (NAIP) and it is cheaper to collect than
LiDAR. LiDAR has the benefit of precisely measuring vertical dimen-
sions, but coverage is spotty with unreliable repeat times. The primary
motivation for using NAIP imagery is its wall-to-wall coverage and
repeated collections which would allow for tracking changes over time.
Indeed, a blended approach using optical and LiDAR data would be
preferable, but is not repeatable at scale.

Early methods for tree detection in remote sensing imagery perform
per-pixel classification to identify tree canopies, tree characteristics,
and tree species (Xiao et al., 2004; Yang et al., 2009; Jensen et al.,
2012; Alonzo et al., 2013; Shang and Chisholm, 2014; Bosch, 2020;
Brandt et al., 2020). The limitation of most of these approaches is
that they output per-pixel maps rather than detecting and localizing
individual trees. However, some methods have been proposed to extract
individual tree locations from the per-pixel maps as a post-processing
step, such as template matching (Yang et al., 2009) and connected
components (Brandt et al., 2020).

Many recent methods on tree detection adopt an object detection
approach (Santos et al., 2019; Zamboni et al., 2021; Weinstein et al.,
2019; Zhang et al., 2022; Das et al., 2022; Beloiu et al., 2023) or
an instance segmentation approach (Martins et al., 2021; Freudenberg
et al., 2022; Yang et al., 2022; Sun et al., 2022; Ball et al., 2023).
Object detection requires a bounding box annotation for each tree in
the training dataset, while instance segmentation requires an accurate
delineation of the tree crown. Bounding box and crown delineation
annotations have size information which provides a useful supervisory
signal for machine learning methods. However, fully annotating a
bounding box or complete crown delineation for each tree is time-
consuming, and it is often difficult for human annotators to visually
determine the correct delineation of overlapping tree crowns.

In this study we focus on the alternative approach of annotating
and predicting tree location points. This approach makes the annota-
tion process easier and more scalable. However, object detection and
instance segmentation methods are unable to learn from point annota-
tions alone because they lack size information. Instead, we can consider
methods from the substantial literature on object counting (Lempitsky
and Zisserman, 2010), where the goal is to learn to count the number
of objects in an image from only point annotations. Some previous
work (Osco et al., 2020; Chen and Shang, 2022) has been success-
ful in adapting these techniques for tree detection. In this study we
expand upon the method of Osco et al. (2020) and introduce several
modifications to improve the results.

Since our method only outputs point locations for the trees, our
results cannot be used to directly estimate tree coverage area or tree
crown size. However, the tree count estimates produced by our method
would be generally useful to city managers, urban foresters, and ecol-
ogists. For example, when developing management plans, we believe
city managers value tree counts over canopy estimates for estimating
maintenance hours and staff requirements (Dwyer et al., 1992). Fur-
thermore, ecologists could use our tree count estimates to track patterns
in the urban forest over space and time (Love et al., 2022).

The primary objectives of our research are to produce a methodol-
ogy for tree detection in urban areas in California and create a map
of tree locations for every urban tree in California. In this work, we
explore the potential for automatic detection and localization of trees in
the California urban forest from aerial imagery. Using machine learning
methods to detect trees in imagery, we can automatically produce a
map of the trees in an urban environment, covering both public and
private land and providing geographic coordinates for each tree.

To the best of our knowledge, no previous study has evaluated
the potential for machine learning-based methods to automate urban
tree detection across the entire state of California. Previous studies
have either evaluated urban tree detection in individual cities in Cal-
2

ifornia (Wegner et al., 2016; Branson et al., 2018) or have addressed
related but different tasks, such as tree detection in the natural forests
of California (Weinstein et al., 2019; Chen and Shang, 2022) or au-
tomated tree species identification from aerial imagery of California
cities (Beery et al., 2022). Our dataset covers several cities across
California, a state with considerable topographic and climatic diversity,
and also includes imagery from multiple years to evaluate the potential
for longitudinal analysis. Specifically, our hand-annotated dataset spans
eight cities, six climate zones, and three image capture years, and
including almost 100,000 tree annotations in total. The high value,
broad impact, and diversity of California’s urban forest make it such
that studies done in this region are broadly applicable to urban forests
globally.

2. Study area and dataset

2.1. Study area

California is the third largest state in the U.S. and the most populous
with a population of 39,538,223 according to the 2020 Decennial Cen-
sus (U.S. Census Bureau, 2020). The California urban forest provides
services and benefits to California’s residents previously estimated to
be worth $8.3 billion annually (McPherson et al., 2017). California’s
urban forests are composed of species with wide-ranging climatic re-
quirements (Love et al., 2022). California’s cities can host these species
because the state has substantial topographic and climatic diversity,
with six distinct California climate zones covering deserts, coastal
and alpine environments (Love et al., 2022; Clarke et al., 2013). The
California urban forest has high diversity compared to other urban
forests, with a higher diversity ranking than the United States at a
national scale, and a higher ranking relative to the most diverse urban
forests within the United States, the Western region (Love et al., 2022;
Ma et al., 2020). California’s urban forests are so diverse that they are
comparable not just to urban forests, but to the most diverse forests in
the world, tropical forests (Love et al., 2022).

2.2. Dataset

We prepared our training and testing datasets using imagery from
U.S. National Agricultural Program (NAIP), which contains aerial im-
agery acquired during the agricultural growing seasons in the United
States. NAIP multispectral imagery is acquired every two years and
covers the entire contiguous United States, typically at 1 m resolution
or 60 cm resolution. We chose NAIP imagery because its coverage,
temporal and spatial resolution, and public availability make it an ideal
resource to support large-scale study of the urban forest in the United
States. In our study we only used 60 cm imagery collected in 2016 or
later.

Table 1 summarizes our dataset and Fig. 1 illustrates the locations
of the included cities and climate zones. In total, our dataset contains
1651 images and 96,425 annotated trees, and covers eight cities and
all six climate zones in California (McPherson, 2010).

The Southern California 2020 portion of the dataset covers five
cities in Southern California and contains roughly 90–100 square im-
age tiles captured in 2020 from each city: Claremont, Long Beach,
Palm Springs, Riverside, and Santa Monica. Each image has a size of
256 × 256 pixels, a resolution of 60 cm, and includes red, green, blue,
and near infrared channels. We collected and annotated NAIP imagery
from 2020 for these sites. We withheld a random 10% split of the
Southern California 2020 images for testing and used the remaining
90% for training.

To further test the extrapolation ability of the network, we prepared
two additional subsets of imagery. We annotated the same sites in
Southern California in the Southern California 2020 portion of the
dataset, but using imagery from 2016 and 2018, to test the ability
of our method to process imagery of a similar location but captured

at different times. We also selected and annotated images from three
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Fig. 1. Locations of cities from which we collected and annotated images to form
our dataset. Each climate zone in California is represented by at least one city in the
dataset. The climate zones represent the following proportions of the total urban reserve
area across the state: Inland Empire (24.03%), Inland Valleys (26.36%). Interior West
(2.25%), Northern California Coast (16.46%), Southern California Coast (24.65%), and
Southwest Desert (6.25%). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

cities in Northern California: Bishop, Chico, and Eureka. These cities
are in different climate zones from the Southern California sites, and
in some places have a higher density of trees, since the cities include
more densely forested rural areas. Thus, these images serve to test the
ability of our method to extrapolate to other regions different from the
training sites.

Our complete dataset combines the Southern and Northern Califor-
nia subsets and data from all three years (2016, 2018, and 2020). The
dataset covers all five of California’s climate zones, with an emphasis
on the Southern California Coast and Inland Empire, which contain
48.68% of the state’s total urban area. After developing our initial
model using the Southern California 2020 subset and validating its
extrapolation ability with the remaining images, we re-trained the
model using the complete dataset to obtain our final tree detection
model.

The various dataset subsets used in the paper are summarized in
Table 2, which lists the number of images and tree annotations in the
train and test splits for each subset.

We used tree inventories acquired by the cities as a starting point
to annotate by hand the locations of all trees in the images, including
trees in both public and private spaces. Since the city inventories only
included trees on public land, we added points where necessary to
ensure coverage of all trees visible in the imagery, including trees on
private land such as in front yards, backyards, and parking lots. We also
visually checked the accuracy of each point and moved it if necessary to
ensure that it was on top of the tree trunk location in the image. If we
3

Table 1
Summary of our dataset of annotated NAIP tiles in California. The number of trees
listed in the three right-most columns is the number of hand-annotated trees in the
study area in each city and in each year. A dash indicates that the area was not
annotated for that year. In total, our dataset contains 95,972 tree annotations. The
climate zone abbreviations are Inland Empire (IE), Inland Valleys (IV), Interior West
(IW), Northern California Coast (NCC), Southern California Coast (SCC), and Southwest
Desert (SD). The cities above the line are in Southern California, and below are in
Northern California. The cells highlighted in gray indicate the Southern California 2020
portion of the dataset.

City Zone Images Tree annotations

2016 2018 2020

Claremont IE 92 4,856 4,794 4,668
Long Beach SCC 100 6,470 6,402 5,843
Palm Springs SD 100 4,431 4,704 4,107
Riverside IE 90 5,015 4,399 4,082
Santa Monica SCC 92 5,822 5,829 5,841

Bishop IW 10 – – 682
Chico IV 99 – 8,185 8,162
Eureka NCC 21 – – 2,133

Total 1,651 26,594 34,313 35,518

Table 2
Summary of dataset subsets used in our experiments.

Subset Images Annotations

Train Test Train Test

Southern California 2020 426 48 21,861 2,680
Southern California 2016–2018 – 948 – 52,722
Northern California 2018–2020 – 229 – 19,162
Complete dataset 1485 166 87,666 8,759

could not determine the tree trunk location by visual inspection, we
put the point on the center of the canopy. This happened sometimes
with palm trees, for example, which have thin trunks that are easily
confused with their shadow. We compared with imagery at a higher
spatial resolution where available to verify tree locations and to ensure
that no non-trees (such as shrubs) were included in the annotations.

3. Methods

We introduce a novel tree detection method using neural network
confidence map regression. Because our annotations are tree location
points, we found a confidence map approach (Lempitsky and Zisser-
man, 2010; Osco et al., 2020) to be the most appropriate for our task.
Our overall process for tree detection and localization is illustrated in
Fig. 2. The input to the system is a stack of raw and derived rasters. The
raster stack is passed through a CNN which outputs a single-channel
confidence map. Peaks in the confidence map should correspond to tree
locations. We identify tree locations in the confidence map using local
peak finding (non-maxima suppression).

Our method is based on the approach of Osco et al. (2020) with
several modifications to improve the results. Osco et al. (2020) employ
a network using a VGG-16 backbone (Simonyan and Zisserman, 2015)
followed by several convolutional blocks with residual connections.
They apply peak finding to the confidence map but use a fixed detection
threshold without hyperparameter tuning. Our method improves upon
the method of Osco et al. (2020) by replacing their network archi-
tecture with an attention-based architecture and using hyperparameter
tuning to optimize the detection results. In our evaluation comparing
our method with several previous methods, we found that our proposed
method produced the best results across several metrics.

3.1. Network architecture

We replace the CNN architecture used previously by Osco et al.
(2020) with a network based on SFANet (Zhu et al., 2019), an archi-
tecture that performed well on several crowd counting benchmarks.
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Fig. 2. Example of tree detection using our method on a section of 2020 NAIP imagery in Santa Monica, CA. We process the input raster (a) in a CNN to produce a confidence
map (b). We then apply peak finding in the confidence map to produce individual tree detections (c).
Fig. 3. HR-SFANet network architecture. The input image is encoded through the first five blocks of convolutional and pooling layers from the VGG-16 network. Separate attention
and confidence heads upsample and aggregate the outputs of the backbone layers to produce an attention map and a confidence map. These are multiplied together to produce
the final confidence map.
Our architecture is illustrated in Fig. 3. SFANet consists of a VGG-
16 backbone (Simonyan and Zisserman, 2015), a confidence head,
and an attention head. The VGG-16 backbone consists of a series of
convolutions and pooling operations to encode the input, while the
output heads consist of convolutions, upsampling operations, and skip
connections to decode the outputs. We modified the SFANet architec-
ture by adding extra layers to the confidence and attention heads so
that they would output at full-resolution rather than half-resolution.
We call our network the HR-SFAnet. The architecture is illustrated in
Fig. 3 and documented in detail in Appendix.

3.2. Data preparation

We use NAIP multi-spectral digital number (DN) data as input,
which has red (R), green (G), blue (B), and near infrared (N) channels.
We also added an NDVI channel (Kriegler et al., 1969; Rouse et al.,
1974) derived from the red and near-infrared channels as follows:

𝑉 = 𝑁 − 𝑅
𝑁 + 𝑅

(1)

The NDVI index is a well-known indicator of live green vegetation, and
we hypothesized its inclusion would help the network identify trees in
the imagery.
4

Each band of the input is normalized before being processed by the
network. The NAIP multispectral DN data is eight-bit and has a range of
0–255. The RGB bands are zero-centered with respect to the ImageNet
dataset (Deng et al., 2009) on which the VGG16 backbone network
was pre-trained. The 𝑁 band is normalized by subtracting 127.5. The
V band has a range of −1 to 1 and so we multiply by 127.5 to bring it
into a similar range as the other bands after normalization.

3.3. Network initialization

The backbone portion of the HR-SFANet network uses a VGG-16
network (Simonyan and Zisserman, 2015) with weights pre-trained on
ImageNet (Deng et al., 2009). Since ImageNet contains RGB images, the
VGG-16 network is not designed for inputs containing the extra near-IR
and NDVI channels present in our imagery. We remedied this by adding
two extra input channels to the first layer of the VGG-16 network. The
filter weights for these channels are randomly initialized using ‘‘Glorot’’
uniform initialization (Glorot and Bengio, 2010).

3.4. Confidence map preparation

During training, each input image tile has a corresponding ground
truth confidence map that is used as target for the output of the
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network. Following Osco et al. (2020) we form the target confidence
map by placing a Gaussian on each tree location and aggregating them
with a per-pixel maximum:

𝐶(𝑥, 𝑦) = max
𝑖

exp
(

−
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

2𝜎2

)

(2)

here (𝑥, 𝑦) is the location of a pixel in the confidence map and (𝑥𝑖, 𝑦𝑖) is
he location of the 𝑖th tree in the image. Using the max operator instead
f a sum (Lempitsky and Zisserman, 2010) ensures that objects have
istinct peaks in the confidence map, even if they are close to each
ther.

While we would ideally adapt the Gaussian width parameter 𝜎 to
ach tree based on its size, our point annotations do not contain size
nformation. Therefore we choose a single fixed value for 𝜎 for all trees.

e tested several settings for 𝜎 and found 𝜎 = 1.8 m to be the best
etting in our experiments.

.5. Loss functions

Our primary loss function is the mean squared error (MSE) loss
etween the predicted and ground truth confidence maps:

MSE = 1
𝑁

∑

𝑥,𝑦
[𝐶 ′(𝑥, 𝑦) − 𝐶(𝑥, 𝑦)]2 (3)

where 𝐶 and 𝐶 ′ are the ground truth and predicted confidence maps,
respectively.

Unlike the CNN used by Osco et al. (2020), our HR-SFANet has an
attention head in addition to the confidence head. Following Zhu et al.
(2019), we apply the binary cross-entropy (BCE) loss function to the
output of the attention head:

𝐿BCE = − 1
𝑁

∑

𝑥,𝑦
[𝐴(𝑥, 𝑦) log(𝐴′(𝑥, 𝑦)) + (1 − 𝐴(𝑥, 𝑦)) log(1 − 𝐴′(𝑥, 𝑦))] (4)

where 𝐴 is a binary mask produced by applying a threshold 𝜏 to the
ground truth confidence map, and 𝐴′ is the output of the attention
head.

The two loss functions are combined in a weighted sum:

𝐿 = 𝐿MSE + 𝛼𝐿BCE (5)

where 𝛼 balances the two loss terms.
Following Zhu et al. (2019), we used 𝜏 = 0.001 and 𝛼 = 0.01. We

tested different settings of 𝛼 but found that the model’s performance
was not sensitive to the setting of 𝛼.

3.6. Peak finding and hyperparameter tuning

During inference, we produce a confidence map from the input
raster and then use peak finding to determine predicted tree locations
(Fig. 2). A location in the confidence map is labeled as a peak if it is the
local maximum in a region of radius 2𝑑 + 1, where 𝑑 is the minimum
allowable distance between peaks. We also remove local maxima below
a threshold, to remove false detections. The threshold can either be
an absolute threshold 𝑡abs or a relative threshold 𝑡rel (relative to the
maximum value in the confidence map).

Osco et al. (2020) proposed to use an absolute threshold of 𝑡abs = 0.2
and a minimum distance of 𝑑 = 3. However, we found that we could
increase detector performance by finding optimal settings through
hyperparameter tuning. For each configuration of the network tested,
after training the model, we used hyperparameter tuning to determine
the optimal settings for 𝑑, 𝑡abs, and 𝑡rel and to choose whether to use the
absolute or relative threshold. We the used Optuna hyperparameter op-
timization framework (Akiba et al., 2019) and searched for the optimal
set of hyperparameters over 200 iterations. We retained the settings
with the highest F-score over the validation set. In our experiments, we
found that, in contrast to the recommendation of Osco et al. (2020), the
relative threshold was always the better choice.
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3.7. Implementation details

We implemented our HR-SFANet in Python using the Tensorflow
(Abadi et al., 2016) and Keras (Chollet et al., 2015) libraries. Training
and inference were performed on an Nvidia V100 GPU.

During training, we processed batches of 256 × 256 tiles from the
training set, using a batch size of eight over 500 epochs. We used the
Adam optimizer (Kingma and Ba, 2015) with learning rate 0.0001, 𝛽1 =
0.9, 𝛽2 = 0.999, and 𝜖 = 1 × 10−7. We reserved 10% of the training data
or validation and retained the model with best validation loss during
raining. For data augmentation, we rotated each training patch by 90◦,

180◦, and 270◦ and also horizontally flipped each patch. This increased
the size of the training set eight-fold. We experimented with further
data augmentation using random image rotation and brightness/color
variation but found that it did not lead to an improvement.

3.8. Other tree detection methods

We also tested two other well-known tree detection methods in our
evaluation: PyCrown (Zörner et al., 2018) and DeepForest (Weinstein
et al., 2019).

3.8.1. PyCrown
PyCrown (Zörner et al., 2018) uses LiDAR data as input and ap-

plies peak finding on a smoothed canopy height model (CHM) raster
to determine tree locations, with some filtering and post-processing
applied to eliminate false positives and increase localization accuracy.
The method is an open-source re-implementation of Dalponte and
Coomes (2016) in Python with some modifications to improve speed
and produce better results. Because PyCrown tends to produce many
false positives on buildings, we removed any tree detections that landed
within OpenStreetMap building extents (Haklay and Weber, 2008).
Since public LiDAR data is not currently available in Palm Springs, CA,
we removed those regions from the test set when evaluating PyCrown.

3.8.2. DeepForest
DeepForest (Weinstein et al., 2019) is a Python package that pro-

vides a pre-trained tree detection model based on the RetinaNet object
detector (Lin et al., 2020). The pre-trained model was trained on RGB
imagery from sites in the National Ecological Observatory Network
(NEON). The method outputs a bounding box for each detected tree.

4. Experiments

4.1. Evaluation metrics

We evaluate our models on five standard metrics: Average Precision
(AP), precision, recall, F-score, and Root Mean Square Error (RMSE).
Given the count of true positives (TP), false positives (FP), and false
negatives (FN), precision, recall, and F-score are calculated as follows:

precision = TP
TP + FP (6)

recall = TP
TP + FN (7)

F-score = 2
precision ⋅ recall
precision + recall (8)

True positives, false positives, and false negatives are determined by
matching predicted tree locations and ground truth tree locations.
We find the minimum weight matching, which minimizes the sum
of distances between matched trees, and ensures that each ground
truth tree and each predicted tree has at most one match. We remove
matches whose distance is over a threshold; in our evaluation we used
a threshold of six meters. Example results from the matching procedure
can be seen in Fig. 4.

RMSE is calculated from the distance between true positive pre-

dictions and their corresponding ground truth trees. Let  be the set
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Table 3
Comparison of tree detection methods on Southern California 2020 test set.
Method AP Precision Recall F-Score RMSE [m]

PyCrown (Zörner et al., 2018) – 0.401 0.661 0.499 2.709
DeepForest (Weinstein et al., 2019) 0.387 0.735 0.294 0.420 2.719
+ fine-tuning 0.701 0.707 0.713 0.710 2.431
+ hyperparameter tuning 0.701 0.782 0.683 0.729 2.413

Osco et al. (2020) 0.660 0.803 0.476 0.598 2.270
+ hyperparameter tuning 0.660 0.764 0.706 0.734 2.263

HR-SFANet (ours) 0.705 0.736 0.733 0.735 2.157
Table 4
Results of our method when extrapolating to different climate zones and years. The
top portion consists of the same Southern California cities in the 2020 training set, but
earlier image capture years, while the bottom portion consists of Northern California
cities distinct from the training set region.

City Year Zone AP Precision Recall F-Score RMSE [m]

Santa Monica 2016 SCC 0.665 0.734 0.693 0.713 2.132
Santa Monica 2018 SCC 0.707 0.732 0.730 0.731 2.188
Long Beach 2016 SCC 0.694 0.799 0.668 0.728 1.963
Long Beach 2018 SCC 0.720 0.856 0.639 0.732 1.830
Claremont 2016 IE 0.654 0.739 0.668 0.701 2.075
Claremont 2018 IE 0.642 0.708 0.668 0.687 2.435
Riverside 2016 IE 0.723 0.819 0.671 0.737 1.905
Riverside 2018 IE 0.590 0.686 0.622 0.652 2.599
Palm Springs 2016 SD 0.624 0.700 0.647 0.672 1.953
Palm Springs 2018 SD 0.645 0.743 0.620 0.676 1.804

Chico 2018 IV 0.708 0.748 0.688 0.716 2.179
Chico 2020 IV 0.701 0.733 0.689 0.710 2.338
Eureka 2020 NCC 0.557 0.744 0.509 0.604 2.423
Bishop 2020 IW 0.687 0.723 0.694 0.708 2.203

of accepted matches and let (𝑥𝑖, 𝑦𝑖) and (𝑥̂𝑖, 𝑦̂𝑖) be the locations of
orresponding predicted and ground truth trees, respectively.

MSE =
√

1
| |

∑

𝑖∈
(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦𝑖 − 𝑥̂𝑖)2 (9)

To calculate AP, we calculate precision and recall over a range of
absolute thresholds for accepting predicted trees according to their con-
fidence value (the value of the confidence map at the tree’s location).
Let 𝑃𝑛 and 𝑅𝑛 be the precision and recall observed at the 𝑛th threshold.
The AP is calculated as:

AP =
∑

𝑛
(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 (10)

AP is useful because it summarizes the performance of the detector
across a range of detection thresholds, whereas the other metrics de-
scribe the performance of the detector at a single detection threshold
optimized to balance both precision and recall.

To calculate evaluation metrics for DeepForest, we considered each
ground truth point contained within a predicted bounding box as a
possible true positive. We calculated an optimal matching to determine
the assignment between ground truth points and bounding boxes which
maximized the number of true positives. To calculate RMSE for Deep-
Forest we used the center points of the bounding boxes for the predicted
tree locations.

4.2. Comparison of methods on Southern California test set

We tested each method on the Southern California 2020 portion of
the dataset. The results are summarized in Table 3.

4.2.1. Our method
As our method is based on Osco et al. (2020) we first tested their

method on our dataset. Since their code is not available, we created
our own implementation based on the description in the paper and
trained the network from Osco et al. (2020) in the same manner as our
method. Using their recommended settings for peak finding, the Osco
6

et al. method achieves an AP of 0.660, F-Score of 0.598, and RMSE
of 2.270 m. After applying our proposed method of hyperparameter
tuning to find the optimal peak finding settings, F-Score increases
to 0.734, and RMSE decreases to 2.263 m. When we replace their
network with our HR-SFANet, AP increases to 0.705, F-Score increases
to 0.735, and RMSE decreases to 2.157 m. This experiment validates
the importance of our proposed network design and hyperparameter
tuning approach to improve the results.

4.2.2. PyCrown
PyCrown only achieved an F-score of 0.499 and RMSE of 2.709 m

on our test set. We could not calculate AP for PyCrown because there
is no detection threshold to vary in this method. The precision for
PyCrown was exceptionally low (0.401), indicating that it output more
false positives than other methods. This could be due to a single tree
having multiple local peaks in its canopy height map, leading to false
detections.

4.2.3. DeepForest
The pre-trained DeepForest model achieved a high precision (0.735)

but low recall (0.294), indicating that it was unable to detect many
trees that other methods could detect. This led to an F-Score of 0.420
and AP of 0.387. This poor performance is likely due to the fact that the
NEON imagery on which DeepForest was trained is higher resolution
than our NAIP imagery, and mostly contains wilderness areas whereas
our imagery contains urban environments.

To improve the results of DeepForest, we fine-tuned the pre-trained
model on our training set. Because our data does not include bounding
box annotations, we placed a fixed size bounding box around each
ground truth point. We experimented with different box sizes and chose
the size that led to the best results on the test set, which was a box with
width and height of 9.6 m (16 pixels). We fine-tuned the model for 15
epochs; training past this point did not yield any further improvement.
After fine-tuning, the AP increased substantially to 0.701, and the F-
Score increased to 0.710 using the default detection threshold setting.
After hyper-parameter tuning, the F-Score improved to 0.729 with
an RMSE of 2.413. This experiment indicates that a bounding box
object detector can be trained to effectively detect trees using point
annotations; however, the performance is below what we achieved with
our confidence map approach.

4.2.4. Inference speed
We calculated the average processing time for each method to detect

trees in a 256 × 256 raster. PyCrown is the slowest method, taking over
five seconds per image. The CNN-based methods are much faster, and
ours is the fastest. DeepForest takes 71 ms per image, Osco et al. (2020)
takes 44 ms per image, and our method takes 21 ms per image.

4.3. Extrapolation to other years and climate zones

When trained and tested on 2020 imagery from Southern Califor-
nia, our method achieved the best results among methods tested. We
then evaluated the performance of our method on pre-2020 Southern
California imagery and on imagery from three cities in Northern Cal-
ifornia, each in a different climate zone. None of the images in these

experiments were present in the training or validation data. Because
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Fig. 4. Example results from our tree detection method on images from Southern California 2020 test set. The method is able to detect and accurately localize most of the trees
in the images. Some areas contain examples of missed detections of trees with small canopies and shrubs being confused with trees.
Fig. 5. Analysis of test set performance with increasing training set size. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

these test sets represent different climate zones, varying tree density,
and in some cases an earlier image capture year than the training set
(see Table 1), they serve to evaluate our method’s ability to generalize
to data different from the training set. The results are summarized
in Table 4. Overall, the precision in these areas was similar to the
precision observed in the 2020 Southern California test set, ranging
from 0.856 to 0.686, but recall was lower, ranging from 0.730 to 0.509.
The F-score ranged from 0.737 to 0.604.

4.4. Qualitative analysis

Fig. 4 shows example results from our method on selected regions
from our test sets. In general, we noticed three typical sources of
errors: missed detections of trees with small canopies; confusion of
different types of plant, such as shrubs, with trees; and over- or under-
estimation of trees in areas of dense canopy, which sometimes have
strong shadows. Another challenge is the variation in viewing angle,
illumination, and canopy size seen in the NAIP imagery, since the time
and date of capture varied across regions and from year to year. These
sources of errors would be mitigated by adding more training data or
fine-tuning on specific regions, and using imagery with higher spatial
and spectral resolution.
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Table 5
Test set results for our HR-SFANet model trained on 90% of the entire dataset, covering
all years and climate zones. The test set is the remaining 10% of the dataset.

AP Precision Recall F-Score RMSE [m]

0.727 0.765 0.720 0.741 1.936

Fig. 6. Results in Eureka (a) before and (b) after re-training model with data from
all areas and image years. After re-training, the model detects more trees in the dense
and shadowed areas.

4.5. Effect of reducing training set size

Deep learning methods are well-known for requiring large amounts
of training data to be effective; however, manual annotation of images
is time-intensive and tedious work. We used the Southern California
2020 portion of our dataset to investigate the relationship between
training set size and test set performance for our task. We subsampled
the training set to various amounts, trained a separate network with
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Fig. 7. Comparison of a manual tree inventory with our tree detection results on three areas from Torrance, CA. Our tree detector is able to find trees on both public and private
land, leading to a more complete inventory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
each subset, and calculated the performance metrics for each network
using the complete test set. The results are shown in Fig. 5. With 1% of
the data (3 images), the F-Score is reduced to 0.447 and AP is 0.481.
With 5% of the data (19 images), F-Score improves to 0.636 and AP to
0.600. From there, the metrics more slowly increase with increasing
training set size. This experiment shows that there are diminishing
gains in adding more training data.

4.6. Effect of increasing training set size

The lowest recall (0.509) was observed in Eureka, a city in Northern
California which contains dense natural forest areas within its urban
boundary (Fig. 6). To evaluate the potential to address sources of error
and improve performance by adding more training data, we re-trained
the model using a random 90% subset of the entire dataset (1,485
images), not just the Southern California 2020 portion as in the original
model. The results of the original and re-trained model in Eureka are
compared in Fig. 6, which illustrates how the re-trained model detects
trees in the dense and shadowed region that were missed by the original
model. Note that the test image shown in Fig. 6 was not in the training
set of either model.

Quantitative results for the re-trained model are shown in Table 5.
The re-trained model improved AP to 0.727, F-score to 0.741, and
RMSE to 1.936 m. However, note that these numbers are not directly
comparable to the results for the models trained and tested on the
Southern California 2020 subset (Table 3), because the test sets for the
two evaluations are not the same.

5. Application

Because the HR-SFANet network in our method is fully convolu-
tional (Shelhamer et al., 2017), it can process any size raster as input.
However, a large raster will need to be processed in tiles to stay within
the memory limitations of the machine. The naïve approach of process-
ing each tile without overlap between the tiles results in disagreement
at the edges of the confidence maps, leading to inaccurate, missing, or
duplicated tree detections. To avoid these artifacts when processing a
large raster, we divide the raster into an overlapping grid of tiles. After
processing by the network, the overlap region is discarded to avoid
edge artifacts. We used a tile size of 2112 × 2112 pixels with an overlap
of 32 pixels. We similarly apply local peak finding on an overlapping
grid when processing a large raster; for peak finding we used a tile size
of 256 × 256 and an overlap of 32 pixels.

Using our method with this tiled inference approach, we processed
NAIP 2020 imagery of all of California’s urban areas. Because our
focus is on creating tree inventories for cities, we excluded any tree
8

detections outside of urban boundaries as determined by the California
Department of Water Resources (Land IQ, 2017)

Our automatic tree detection approach can fill deficiencies in tree
inventories that typically only cover street trees on public rights-of-
way areas and thus miss a large proportion of the trees in a city’s
urban forest. For example, Fig. 7 compares a manual tree inventory
from Torrance, CA (Love et al., 2022) with our automatic tree detection
results. The blue points are from the existing urban forest inventory,
and the purple points are trees detected with our method. Our tree
detector is able to detect trees in private spaces that are not labeled
in the public inventory.

Our method can also support larger-scale analyses of tree density
across the state. For example, Fig. 8 shows a tree density map for urban
areas in Southern California. To create this map, we calculated the
number of detected trees per grid cell over a 100 m × 100 m grid.

6. Conclusions and future work

Creating good data and efficient systems for the management of
our urban forests will be essential as our climate changes, and the
ecosystem services, such as controlling microclimate, of our urban
forests become increasingly important (McPherson et al., 2016). Cur-
rently, inventories of a city’s urban forest are completed manually,
and repeated on a routine basis (Nielsen et al., 2014). This time-
consuming process costs cities significant time and financial resources,
and typically only accounts for the trees within the publicly managed
urban forest. Inventories are used by cities to manage their urban
forest, and used by cities and researchers to estimate the ecosystem
services given by their forests (McPherson et al., 2016; Love et al.,
2022). Trees on privately managed land, like public trees, contribute
to the ecosystem services an urban forest provides to its residents,
but there are few ways to account for those services in typical tree
inventories and resulting research. Our research allows for trees in
the entire urban area to be counted, creating more accurate total tree
estimates for cities and neighborhoods. Because our counts are spatially
explicit, managers can use them to identify areas with relatively few
urban trees, and attempt to address why that is the case and target
that area for planting. Our data can be used to compare socioeconomic
trends with tree counts, find trends in where there are more publicly
or privately managed trees, and identify areas of tree inequity in urban
areas. By comparing tree inventories across years, we could analyze the
progress of the urban forest over time and better understand the effect
of environmental conditions such as drought.

Future work could include exploring the use of imagery with higher
spatial and spectral resolution, to help the detector separate out in-
dividual tree canopies in dense stands of trees, detect small trees,
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Fig. 8. Visualization of tree count per .01 km2 in the Los Angeles area. Each .01 km2 is visualized using the total number of trees we detected in that grid after applying the
Tree Detector to 2020 NAIP imagery. The basemap shown is the World Imagery Basemap accessed through ArcGIS Pro (ESRI, 2023).
and distinguish trees from other visually similar plants. It also will be
important to consider how to easily enable end users to fine-tune the
model for their particular region of interest.

Furthermore, while our method accurately detects and localizes
trees from aerial imagery, on-the-ground urban tree inventories provide
much more information than our current method can provide, such
as: coarse-grained classification of the tree (e.g., identifying decidu-
ous and coniferous trees); fine-grained classification of the tree genus
or species; estimation of canopy size; health status of the tree; and
monitoring of silvicultural treatments. The ability to produce such
information would be highly valuable for improving an urban tree
inventory. Future work lies in incorporating techniques such as image-
based classification (Beery et al., 2022) and canopy size estimation us-
ing instance segmentation (Sun et al., 2022) to automatically determine
these important tree properties from imagery.

CRediT authorship contribution statement

Jonathan Ventura: Conceptualization, Investigation, Methodology,
Software, Validation, Writing – original draft, Writing – review &
editing. Camille Pawlak: Conceptualization, Data curation, Validation,
Visualization, Writing – original draft, Writing – review & editing. Milo
Honsberger: Data curation. Cameron Gonsalves: Data curation. Ju-
lian Rice: Data curation, Software. Natalie L.R. Love: Conceptualiza-
tion. Skyler Han: Software. Viet Nguyen: Software. Keilana Sugano:
Data curation. Jacqueline Doremus: Supervision. G. Andrew Fricker:
Conceptualization, Methodology, Writing – original draft, Writing –
review & editing. Jenn Yost: Conceptualization, Funding acquisition,
Project administration, Writing – review & editing. Matt Ritter: Con-
ceptualization, Funding acquisition, Project administration, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
9

Data availability

The code is available at https://github.com/jonathanventura/urban-
tree-detection and the data is available at https://github.com/jonathan
ventura/urban-tree-detection-data. Tree detection results are available
at OSF:4S859 (Ventura et al., 2024) and as an interactive map at
https://ufei.calpoly.edu/.

Acknowledgments

This project was funded by CAL FIRE (award number: 8GB18415)
the US Forest Service (award number: 21-CS-11052021-201), and an
incubation grant from the Data Science Strategic Research Initiative at
California Polytechnic State University. Thanks to Allan Hollander, Jim
Thorne, Russ White, Ronny Hänsch, and the anonymous reviewers for
their comments on the manuscript.

Appendix. HR-SFANet architecture

Here we provide pseudo-code to exactly describe the architecture
of our HR-SFANet network, which is a modification of the original
SFANet architecture (Zhu et al., 2019). The pseudocode makes use of
the following standard neural network operations:

• Conv(𝑛, 𝑘, 𝑥): 2D convolution on input 𝑥 with a filter size of 𝑘 × 𝑘
and 𝑛 output channels.

• ReLU(𝑥) = max(0, 𝑥): Element-wise rectified linear unit.
• Sigmoid(𝑥) = 1∕(1 + exp(−𝑥)): Element-wise sigmoid function.
• BatchNorm(𝑥): Batch normalization (Ioffe and Szegedy, 2015).
• MaxPool(𝑥): 2 × 2 max pooling with a stride of 2.
• Concatenate(𝑥, 𝑦): Channel-wise concatenation of 𝑥 and 𝑦.
• Upsample(𝑥): 2× upsampling of input 𝑥 using bilinear interpolation.
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Algorithm 1 High-Resolution SFANet
function HR-SFANet(input)

conv12, conv22, conv33, conv43, conv53 ← VGG16Backbone(input)
attention_map ← Decoder(conv12, conv22, conv33, conv43, conv53)
attention_map ← Sigmoid(BatchNorm(Conv(1, 1,attention_map)))
confidence_map ← Decoder(conv12, conv22, conv33, conv43, conv53)
confidence_map ← Conv(1, 1, attention_map ∗ confidence_map)
return confidence_map, attention_map

end function
Algorithm 2 VGG-16 Backbone
function VGG16Backbone(input)

conv11 ← ReLU(BatchNorm(Conv(64, 3, 𝑖𝑛𝑝𝑢𝑡)) ⊳ Block 1
conv12 ← ReLU(BatchNorm(Conv(64, 3, conv11))
conv21 ← ReLU(BatchNorm(Conv(128, 3,MaxPool(conv21))) ⊳ Block 2
conv22 ← ReLU(BatchNorm(Conv(128, 3, conv21))
conv31 ← ReLU(BatchNorm(Conv(256, 3,MaxPool(conv22))) ⊳ Block 3
conv32 ← ReLU(BatchNorm(Conv(256, 3, conv31))
conv33 ← ReLU(BatchNorm(Conv(256, 3, conv32))
conv41 ← ReLU(BatchNorm(Conv(512, 3,MaxPool(conv33))) ⊳ Block 4
conv42 ← ReLU(BatchNorm(Conv(512, 3, conv41))
conv43 ← ReLU(BatchNorm(Conv(512, 3, conv42))
conv51 ← ReLU(BatchNorm(Conv(512, 3,MaxPool(conv43))) ⊳ Block 5
conv52 ← ReLU(BatchNorm(Conv(512, 3, conv51))
conv53 ← ReLU(BatchNorm(Conv(512, 3, conv52))
return conv12, conv22, conv33, conv43, conv53

end function
Algorithm 3 Decoder
function Decoder(conv11, conv22, conv33, conv43, conv53)

𝑥 ← Concatenate(Upsample(conv53), conv43) ⊳ Block 1
𝑥 ← ReLU(BatchNorm(Conv(256, 1, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(256, 3, 𝑥)))
𝑥 ← Concatenate(Upsample(𝑥), conv33) ⊳ Block 2
𝑥 ← ReLU(BatchNorm(Conv(128, 1, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(128, 3, 𝑥)))
𝑥 ← Concatenate(Upsample(𝑥), conv22) ⊳ Block 3
𝑥 ← ReLU(BatchNorm(Conv(64, 1, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(64, 3, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(32, 3, 𝑥)))
𝑥 ← Concatenate(Upsample(𝑥), conv12) ⊳ Block 4
𝑥 ← ReLU(BatchNorm(Conv(32, 1, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(32, 3, 𝑥)))
𝑥 ← ReLU(BatchNorm(Conv(32, 3, 𝑥)))
return 𝑥

end function
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