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A B S T R A C T   

Higher diversity within a city’s street trees may offer greater cooling benefits than less diverse urban forests. 
California’s urban forests are among the most diverse in the world and offer an opportunity to test the rela
tionship between diversity and cooling at a large scale. For 136 urban ZIP codes, we connect the most 
comprehensive data to date on California’s urban forests to both local station and satellite weather data for the 
period 2010–2018. We test whether biodiversity, measured by the Shannon-Wiener index and the new Top 
Diversity 50 index, is correlated with extreme heat in summer. After controlling for local averages in weather and 
tree canopy cover, we find that urban forest biodiversity is associated with lower maximum and higher minimum 
temperatures for June to September. Our specification makes it unlikely that reverse causality drives our result. 
Instead, we suggest that greater tree species diversity may boost daytime cooling through several pathways, 
including mutualism and greater aboveground biomass, a mechanical relationship where greater biodiversity 
implies a greater likelihood of having species with excellent shade, and cooling benefits from structural diversity 
in urban settings.   

1. Introduction 

Tree cover in cities is decreasing just as cities face more frequent hot 
daily temperatures from climate change. Among 20 US cities, 17 saw 
tree cover decline over a 6 year period (Nowak and Greenfield, 2020), 
and this pattern held true among the 20 most populous cities in the Los 
Angeles Basin (Lee et al., 2017). Urban trees provide many ecosystem 
services to residents including carbon sequestration, reduction in 
pollution and stormwater runoff, and the focus of this study, regulation 
of microclimates (Livesley et al., 2016). Loss in green cover shifts the 
surface energy balance through changes in the absorption and reflection 
of solar radiation (Bowler et al., 2010), causing the core of an urban area 
to be much warmer than surrounding areas and results in an ‘urban heat 
island’ (Oke, 1982). Concerns over tree cover loss are growing given that 
the average temperature in Los Angeles is expected to increase by 2–7℉ 
over the next forty years (Burillo et al., 2019). 

Trees reduce surface and air temperatures through shade and 
evapotranspiration (Dimoudi and Nikolopoulou, 2003). Recent research 
has explored what elements of tree planting offer the greatest benefits, 
such as cooling buildings and associated energy savings. In some 
research an increase in the leaf area density of trees has shown to cool 
temperatures by 2.2 ◦C, mitigating the urban heat island effect (Tam
askani Esfehankalateh et al., 2021). Diverse urban forests might have 

greater variation in structural features among tree species, such as large 
crowns, short trunks, dense canopies, and greater leaf density, that may 
aid cooling (Kong et al., 2017; Tsoka et al., 2021; Tamaskani Esfe
hankalateh et al., 2021). Recently, Wang et al. (2021) explored this 
hypothesis in Changzhou, China using Landsat land surface tempera
tures and found that greater biodiversity could strengthen urban forests’ 
cooling effect. While this conclusion is encouraging, differences in 
population density, built environment, greenspace structure and abun
dance, and climate makes it difficult to generalize these results to other 
settings (Mirzaei and Haghighat, 2010). 

Exposure to extreme heat negatively affects human physiology. 
Several studies utilized natural experiments to document the human 
response to heat exposure, finding a strong, negative effect on cognition 
(Garg et al., 2020; Park, 2022), as well as mental health and 
decision-making (Baylis, 2020; Heyes and Saberian, 2019; Mullins and 
White, 2020). In a study in California, White (2017) found that exposure 
to extreme heat increases hospital and emergency department visits, on 
a day under 40◦F there is a 6.1% decrease in emergency department 
visits. Exposure to extreme heat also increases the incidence of work
place injury (Adam-Poupart et al., 2014; Kjellstrom and Crowe, 2011). 

Most concerning, the frequency and severity of heatwaves are pre
dicted to increase over time, which will prolong urban resident’s 
exposure to elevated temperatures (Perkins et al., 2012). Heatwaves, 
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characterized by stagnant, warm air that raises minimum temperatures 
over several days, are associated with increases in cases of heat stroke, 
heat exhaustion, and heat-related mortality (Kovats and Hajat, 2008; 
Luber and McGeehin, 2008). A major concern raised by the increased 
frequency of heat waves is the impact from high nighttime temperatures, 
especially among the elderly. Laaidi et al. (2012) found that repeated 
exposure to high nighttime temperatures in urban areas increased the 
risk of death among elderly populations. There is a greater risk of 
mortality when warm night temperatures follow a hot day than when a 
hot day follows a cool night (Murage et al., 2017). Public investing in 
street trees may provide communities unable to afford to increase 
spending on air conditioning in response to extreme heat an equitable 
option for urban cooling (Doremus et al., 2022). 

This paper focuses on street tree diversity as a potential tool for 
reducing human exposure to extreme heat in urban areas.1 We focus on 
the urban heat island effect in the summer rather than the winter, in 
which hot areas become hotter, potentially exposing residents to 
extreme heat. Using richly detailed data on street tree diversity for 136 
urban ZIP codes, this paper assesses whether ZIP codes with greater 
biodiversity are associated with lower daily temperature in the summer 
between 2010 and 2018. To isolate the effect of tree diversity on cooling 
from that of canopy cover, we control for local tree cover. In our 
preferred model specification, we include a fixed effect for areas 
encompassed by ZIP codes that share the same first three digits. This 
controls for local averages in weather, allowing us to focus on how 
temperature varies with biodiversity within a small geographic area. 

Our study builds on the results from Wang et al. (2021), testing 
whether the negative relationship between tree species diversity and 
cooling holds at a much greater scale, and doing so within a drier climate 
with exceptional species richness. Together, results at the macro and 
micro level from two distinct settings would make a compelling case that 
street tree diversity is a potential strategy for mitigating urban heat and 
an urban planning strategy to maximize cooling capacity of urban for
ests without increasing their area. 

2. Empirical analysis 

2.1. Data 

Our analysis uses urban forest species composition data and local 
weather data gathered from two sources. The dataset represents 136 
California ZIP codes mostly concentrated in highly urbanized areas 
along the coast of California (Fig. 1). The 136 ZIP codes are categorized 
into forty three-digit ZIP codes. The weather data from (National Centers 
for Environmental Information, 2021) and (PRISM Climate Group, 
Oregon State University, 2004) report daily temperatures in degrees 
Fahrenheit from 2010 to 2018. We restricted observations to June 
through September because this time corresponds to the hottest months 
in different regions of California. Table 1 presents summary statistics of 
the variables included in our analysis. 

2.1.1. Urban forests characteristics 
To estimate urban forest biodiversity among 136 ZIP codes in Cali

fornia, we used species composition data from the California Urban 
Forest Inventory which is the largest and most comprehensive database 
of urban trees in California (Love et al., 2022).2 This inventory consists 
of individual urban tree records obtained from private arborist com
panies and multiple municipal inventories. Arborists collected data for 

public street trees and some public parks as contracted. The full dataset 
consists of over 7 million publicly managed trees across the state of 
California (Love et al., 2022). From these data, we calculated two 
measures of urban tree diversity at the ZIP code level: the 
Shannon-Wiener index and, following Love et al. (2022), the Top Di
versity 50 index (TD-50). The Shannon-Wiener index is a widely-used 
metric of diversity in many fields including urban forestry, and thus in 
this study, it is the variable of main interest (Wang et al., 2020). Eq. 1 
below shows the calculation of the Shannon-Wiener index at the species 
and ZIP code level. The share of trees in species i is represented by pi =
ni
N, where ni is the number of trees in species i and N is the total count of 
trees in the ZIP code. In Eq. 1 the number of species is represented by K. 
The heat map in Fig. 1 demonstrates the geographic scope of the data 
and distribution of Shannon-Wiener indices. 

Fig. 1. Shannon-Wiener indices of California Zip Codes. Note: Heat map of 
Shannon-Wiener indices for 136 California ZIP codes gathered from Love et al. 
(2022). Shannon-Wiener index is calculated at the ZIP code level and time 
invariant. Data used was gathered over the course of 2014 to 2019. 

Table 1 
Summary Statistics.   

Mean SD Min Max N 

Panel A: Weather Station Data 
Maximum Temperature 84.67 10.91  40.33 130.00 145,453 
Minimum Temperature 59.55 7.39  -1.00 97.00 145,377 
Over 90 Fahrenheit 0.35 0.48  0.00 1.00 145,453 
Panel B: PRISM Data 
Maximum Temperature 83.46 10.42  38.58 118.20 149,328 
Minimum Temperature 58.44 6.69  23.18 88.27 149,328 
Over 90 Fahrenheit 0.30 0.46  0.00 1.00 149,328 
Panel C: Tree Data 
Shannon-Wiener index 3.21 0.72  0.00 4.37 136 
Tree Records 7586.44 9168.72  2.00 83,408 136 
Tree Canopy Cover 8.41 11.72  0.00 58.31 136 

Note: Table 1 provides summary statistics on temperature and urban forest 
characteristics. Urban forests variables are gathered from Love et al. (2021). 
Panel A includes summary statistics for temperature outcome variables derived 
from National Centers for Environmental Information (n.d.). Panel B displays 
summary statistics for daily temperature data gathered from PRISM Climate 
Group (2004). All temperature data obtained is for 136 California ZIP codes 
from 2010 to 2018. Maximum and minimum temperatures are reported in de
grees Fahrenheit. The indicator variable for over 90 degrees Fahrenheit takes the 
value of one if the day is over 90 degrees Fahrenheit, and zero otherwise. Panel C 
displays summary statistics for tree data derived from the CUF Inventory for 
each of the 136 ZIP codes (Love et al., 2022). N indicates the number of ob
servations at the weather station level (A), the number of observations at the 
PRISM level data (B), and the zip code level of observance for tree diversity (C) 

1 We use the term street tree throughout this paper to refer to trees that line 
streets in urban areas. However, we would like to note that there is a small 
share of the trees in our inventory that are located in green-blue spaces, such as 
parks.  

2 https://datastudio.google.com/u/0/reporting/880d448d-de26–48d3-b563 
–0c6317e456e4/page/jWHKB 
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Shannon − Wiener index = −
∑K

i=1
piln(pi) (1) 

The TD-50 index is a new measure of urban forest biodiversity that is 
easier to interpret than the Shannon-Wiener index. The TD-50 measures 
the cumulative number of species accounting for the top 50% abundance 
of trees in a given ZIP code. The TD-50 index was calculated by first 
determining the relative abundance of each species in a given ZIP, then 
sorting by species abundance from highest to lowest, and finally, 
determining the number of species accounting for the top 50% of trees in 
that ZIP code. The more species comprising the top 50% of trees, the 
higher the diversity of the urban forest is in that ZIP code. The TD-50 
index allows for an intuitive comparison of species diversity between 
areas. For example, Love et al. (2022) compared urban tree diversity 
among cities in California and found that only 3 tree species comprised 
50% of trees in Cerritos (TD-50 of 3) while 16 species comprise 50% of 
trees in San Mateo (TD-50 of 16), indicating higher urban forest di
versity in San Mateo than Cerritos. The TD-50 measure is highly corre
lated with the Shannon-Wiener index and is used as a robustness check 
to determine whether patterns are concordant across multiple measures 
of biodiversity (Love et al., 2022). 

In addition to tree biodiversity, we used the CUF Inventory to sum
marize the structural characteristics of the urban forests within the 136 
ZIP codes. We calculated the variance in diameter at breast height (DBH) 
and height across each ZIP code for trees with data available. We did not 
include crown width in these measurements, as only 4% of our data had 
that attribute. 97% of the tree data is associated with DBH data 
(1,041,864 trees), and 71% is associated with height data (760,870 
trees). We also examined trends in foliage-type of the trees, with each 
species categorized as evergreen, deciduous, partly deciduous, conif
erous, or palm. These attributes come from SelecTree, a database of 
California’s urban trees meant to help guide species selection (Selec
Tree, 2022). 

Tree canopy cover contributes to urban heat island mitigation 
(Dimoudi and Nikolopoulou, 2003), thus in some specifications we 
controlled for tree canopy cover (Methods Section 2.2; Table 2;). Grid
ded tree canopy cover data was obtained from the National Land Cover 

Database (NLCD; Coulston et al., 2012). Specifically, we downloaded 
canopy cover data where each 30 m resolution cell denoted percent 
canopy cover in that area during 2011, which falls within the period of 
study (2010–2018). We used these data to calculate percent canopy 
cover per ZIP code. To do this, we included the cells that had a majority 
overlap with the ZIP code. For this set of cells, we then took the average 
of the percent canopy cover per cell for the cells within that ZIP code. 

2.1.2. Temperature data: weather stations 
Our primary source of air temperature data was downloaded from 

the National Centers for Environmental Information (no date). Specif
ically, we downloaded daily maximum and minimum air temperature 
values corresponding to weather stations in each of the 136 ZIP codes. 
The daily observations are recorded in degrees Fahrenheit for June 
through September from 2010 to 2018. Of the 136 ZIP codes, 105 
contain one weather station, twenty-two contain the average of two 
stations, eight contain the average of three stations and one contains the 
average of six stations. Some weather stations are associated with 
multiple ZIP codes. 

The three outcome variables for this analysis are the daily maximum, 
daily minimum, and an indicator for the daily maximum exceeding 
90℉. The indicator variable for whether a day exceeds 90℉ creates a 
threshold for extreme heat as it relates to human health and comfort. 
While most ZIP codes have complete temperature data, others have 
sporadic missing daily observations. There are 3875 missing daily 
maximum temperature observations and 3951 missing daily minimum 
temperature observations. In total, our dataset consists of 145,377 daily 
temperature observations at the zip-month-year level. 

The largest limitation of the weather station data is that air tem
perature data is measured at a single location that may not reflect micro 
differences in temperature experienced throughout a ZIP code. Areas 
near trees might be cooler than open spaces that lack shade. These ob
servations do not account for those microclimatic differences. Another 
limitation is that the placement and elevation of each weather station is 
not randomly assigned and may bias temperature measurement in un
predictable ways. 

2.1.3. Temperature data: PRISM 
Though the weather station data are highly reliable (Behnke et al., 

2016), to ensure our results are robust we also obtained daily temper
ature data from the PRISM (Parameter-elevation Regressions on Inde
pendent Slopes Model) climate group (PRISM Climate Group, 2004). 
These gridded data help test whether missing temperature data or 
non-random weather station placement affect the magnitude and di
rection of associations between temperature and biodiversity. PRISM 
offers gridded daily temperature data at a 4 km resolution. We down
loaded daily maximum and minimum temperatures between 2010–2018 
using the prism package designed for the statistical software R (Hart and 
Bell, 2015; Core Team, 2022). We used these data to calculate the same 
three outcome variables listed in the above section: an indicator for the 
daily maximum exceeding 90◦F as well as maximum and minimum daily 
temperatures within each of the 136 ZIP codes. 

The major limitation of using PRISM data to assess temperatures in 
urbanized areas is the relatively large resolution (4 km). A single 4 km 
grid cell may include both urban and non-urban areas (e.g., surrounding 
agricultural fields), whereas weather stations are located directly in 
urbanized areas. This may limit our ability to assess the temperature 
specifically in urban areas which are often warmer than surrounding 
areas due to the urban heat island effect (Imhoff et al., 2010). While both 
sources of temperature data (weather stations and gridded PRISM data) 
have limitations, together they provide a robust assessment of daily 
urban temperatures during the study period. 

2.2. Model specification 

Our goal is to investigate the relationship between temperature and 

Table 2 
Maximum Over 90℉ Indicator.   

No fixed 
effects 

3-digit 
ZIP code 
fixed 
effects 

3-digit ZIP 
code and 
month 
fixed 
effects 

3-digit ZIP 
code and 
month 
fixed 
effects 

3-digit ZIP 
by month, 
year- 
month FE 

Panel A: Weather Station Data 
Shannon 

index 
-0.15 * ** -0.07 * ** -0.07 * ** -0.07 * ** -0.07 * ** 
(0.05) (0.02) (0.02) (0.02) (0.02) 

Tree Canopy 
Cover    

0.00     
(0.00)  

R2 0.05 0.34 0.35 0.35 0.38 
Observations 145,453 145,453 145,453 145,453 145,453 
Panel B: PRISM Data 
Shannon 

index 
-0.15 * ** -0.07 * ** -0.07 * ** -0.07 * ** -0.07 * ** 
(0.04) (0.02) (0.02) (0.02) (0.02) 

Tree Canopy 
Cover    

-0.002     
(0.002)  

R2 0.05 0.31 0.32 0.32 0.35 
Observations 149,328 149,328 149,328 149,328 149,328 

Note: Table 2 provides regression results for the over 90 degrees Fahrenheit 
indicator. The indicator variable takes the value of one if the day has a maximum 
temperature over 90 degrees Fahrenheit, and zero otherwise. Shannon-Wiener 
index is used as the measure of urban forest diversity in all regressions. Re
sults reflect the use of weather station data from National Centers for Environ
mental Information (n.d.) in Panel A and PRISM Climate Group (2004) in Panel 
B. The use of fixed effects is shown in each column header. Column 5 controls for 
percent tree canopy cover gathered from National Land Cover Database (2012). 
Tree canopy cover is the percent cover for each ZIP code. Each regression in
cludes a constant that is not reported. Standard errors are clustered by 3-digit 
ZIP code and reported in parentheses. * ** p < 0.01, * * p < 0.05, * p < 0.1. 
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urban tree diversity within a local area. We do this using a fixed effects 
ordinary least squares model where our suite of fixed effects controls for 
shared patterns in weather. In our most complete specification, they 
control for the average temperature within a local geographic area, as 
well as the average temperature in California for that month-year. For 
example, to estimate the effect of biodiversity on maximum temperature 
in ZIP code 90604 during July 2017, we compare the maximum tem
perature in that ZIP code to how it differs from the average within that 
three-digit zip code area, 906 as well as the average across California in 
July 2017. The expression below includes each term estimated in the 
most complete specification 

yijt = αj + β Biodiversityi + γt + εijt (2) 

In this expression, the indices are i for a particular ZIP code, j for a 
three-digit ZIP code, and t is the month-year within the panel. The term 
yijt is our outcome variable, which is either maximum or minimum 
temperature or an indicator variable for the temperature exceeding 
90◦F. The first term αj is a vector of intercepts that control for local 
geographical patterns in weather. Our spatial unit for local averages is 
the three-digit ZIP code area, the same used by Giacinto et al. (2021). 
These fixed effects control for common weather within an area, for 
example ZIP codes in the Central Valley of California will have higher 
average temperatures in the summer than ZIP codes in San Diego. By 
including this measure, we were able to estimate the relationship be
tween temperature and biodiversity within a local area. 

The term Biodiversityi is a measure of a ZIP code’s urban tree di
versity as measured by either the Shannon-Wiener or TD-50 index, and 
the coefficient β is the parameter of interest. We also include the percent 
of the ZIP code covered by tree canopy. This is necessary because if 
biodiversity scales with the amount of tree cover, then β may also reflect 
omitted variable bias from tree cover instead of the effect of tree species 
diversity on temperature. By including tree canopy cover in our model, 
we control for this potential source of bias. As noted earlier, our in
ventory data include a small share of trees from parks and other green- 
blue spaces. If tree diversity is correlated with being located in a blue- 
green space, our specification will suffer from confounding. Canopy 
cover, which is also likely correlated with blue-green spaces, helps 
address this confounding. However, confounding from blue-green 
spaces remains a limitation of our approach. 

The coefficients γt are a set of temporal fixed effects to control for 
shared large-scale patterns in weather that occur across the state. We 
begin by using month fixed effects, which will soak up average differ
ences in temperature between June and August, across all ZIP codes. In 
our specification with the most controls, we allow this difference to vary 
across years by including year-month fixed effects. In this case, these 
fixed effects would control for extreme heat in response to the 2018 
North American Heat Wave in July relative to other years in July. εijt is 
an error term that captures factors that affect heat that are not included 
in the regression specification. We assume that unobservables are likely 
correlated within a geographic area, so we cluster the standard errors at 
the three-digit ZIP code level. This is standard practice within the eco
nomics of weather literature (Dell et al., 2014). Because we have more 
than thirty clusters, the standard clustering method performs well 
(Cameron et al., 2008). We run a series of regressions, building in more 
controls across specifications, to assess the risk of omitted variable bias. 

To assess the role of structural diversity in mitigating heat, we also 
estimated a model that included variation in tree diameter, share of trees 
in each ZIP code that are deciduous, and tree height. This model, re
ported in the appendix, is a fixed effects ordinary least squares model 
where the outcome is the maximum temperature within a 3-digit ZIP 
code. The model includes fixed effects for each month, canopy cover, the 
variance of DBH within a ZIP code, the share of trees deciduous within a 
ZIP code, and the variance of height within a ZIP code as covariates. We 
ran this model with and without Shannon diversity as a predictor. 

3. Results 

We found that ZIP codes with greater tree diversity (as measured by 
the Shannon-Wiener index) were associated with fewer total days over 
90℉ within the year, and this result was similar when using weather 
station and PRISM data (Fig. 2). This pattern was consistent with results 
from our linear regression models. Across all model specifications pre
sented in Table 2, the probability that a given day would exceed 90℉ 
was lower in ZIP codes with greater tree diversity as measured by the 
Shannon-Wiener index (Table 2). In our simplest specification without 
any fixed effects, we found that the probability of a day exceeding 90℉ 
was lowered by 15% for every increase of 1 unit on the Shannon-Wiener 
diversity index scale (Table 2). This pattern was robust when we 
included fixed effects to control for average temperature within a three- 
digit ZIP code (Table 2, columns 2–5). The results from this specification 
indicate that within a three-digit ZIP code area, ZIP codes with greater 
tree diversity were less likely to have days that exceeded 90℉. When 
including these fixed effects, the probability of a day exceeding 90℉ was 
7% lower for every increase of 1 unit on the Shannon-Wiener diversity 
index scale (Table 2). These results were robust when we controlled for 
canopy cover, indicating that the effect of tree diversity on the proba
bility that a day exceeds 90℉ was independent of the effect of canopy 
cover on this variable. Moreover, these results were consistent between 

Fig. 2. Street tree biodiversity and heat across two data sources. Note: 
Fig. 2 reflects the relationship between the Shannon-Wiener index and the 
number of days the maximum temperature exceeds 90 degrees Fahrenheit for a 
given ZIP code. Shannon-Wiener indices for 136 California ZIP codes are 
gathered from Love et al. (2022). Temperature outcomes are derived from 
National Centers for Environmental Information in Panel A and PRISM Climate 
Group (2004) in Panel B. Fig. 2 was created using the program “binscatter” 
(Stepner, 2013). Binscatter creates bins within the dataset (like a histogram) 
and plots the average within that bin. 
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both weather data sources (Table 2, panel A vs. B). 
The results for our linear regression models for the realized daily 

maximum temperature follow a similar pattern to the previously 
mentioned results. We found that ZIP codes with greater tree diversity 
were also associated with lower daily maximum temperature, and this 
result was consistent across all model specifications and when using 
weather station and PRISM data (Table 3; Fig. 3). The estimated 
decrease in maximum temperature for every unit increase in the 
Shannon-Wiener index is 2.40℉, as shown in columns 2, 3 and 6. The 
estimate drops to a decrease of 2.24℉ when tree canopy cover is 
accounted for. The result using no fixed effects is also negative, but with 
an estimate of 3.47℉. Panel A of Fig. 3 illustrates the relationship be
tween Shannon-Wiener index and daily maximum temperature during 
California’s four summer months. 

We also explored how the Shannon-Wiener Index coefficient changes 
when including measures of structural diversity among the covariates. 
When predicting the maximum temperature, we found that the absolute 
value of the coefficient for the Shannon-Wiener index grew, e.g. the 
effect remained and was stronger than that found in models without tree 
height and width variance. The estimated decrease in maximum tem
perature for every unit increase in the Shannon-Wiener index is 2.93℉, a 
slightly larger decrease than the coefficient estimated in a model 
without tree structural characteristics (Table D). In the model including 
the Shannon-Wiener index, the coefficient on tree canopy was not sig
nificant while the coefficients on DBH and height were significant. 
However, without the Shannon-Wiener index, height was not significant 
(Table D). The estimated decrease in maximum temperature for every 
one-inch increase in DBH variance was 0.03℉ (Table D). This coefficient 
was the same with and without the Shannon-Wiener index included in 
the model. We also ran a model that included the percentage of trees in a 
given in a ZIP code that were deciduous to try to account for structure. 
The estimated decrease in maximum temperature for every unit increase 
in the Shannon-Wiener index is 3.55℉, a slightly larger decrease than 

the coefficient estimated in a model without tree structural character
istics, and slightly larger decrease than a model without including the 
percentage of trees deciduous. The coefficients for height and DBH 
variance are the same in this model. The estimated decrease in 
maximum temperature for every 1% increase in share deciduous is 
0.1℉. In the model that didn’t include Shannon-Wiener diversity as a 
predictor, the percentage of trees deciduous was not a significant factor. 
Together, the negative coefficient on the variance in DBH and the 
persistent, and large, negative coefficient on the Shannon-Wiener index 
suggest both that structural diversity may be a pathway by which di
versity mitigates heat and that the Shannon-Wiener index captures as
pects of diversity beyond those measured in variance in diameter or 
height. 

The results for our linear regression models for the realized daily 
minimum temperature outcome contrasts those of the previously dis
cussed outcomes. In our model without fixed effects, we find that ZIP 
codes with greater biodiversity were associated with lower daily mini
mum temperature, but this result is not significant (Table 4). In contrast, 
the models that include fixed effects found that ZIP codes with greater 
tree species diversity were associated with higher daily minimum tem
perature. In other words, nights are warmer in areas with relatively 

Table 3 
Maximum Temperature.   

No fixed 
effects 

3-digit 
ZIP code 
fixed 
effects 

3-digit 
ZIP code 
and 
month 
fixed 
effects 

3-digit ZIP 
code and 
month 
fixed 
effects 
(controls 
for tree 
canopy) 

3-digit 
ZIP by 
month, 
year- 
month FE 

Panel A: Weather Station Data 
Shannon 

index 
-3.47 * * -2.40 * ** -2.40 * ** -2.24 * ** -2.40 * ** 
(1.26) (0.67) (0.67) (0.65) (0.67) 

Tree Canopy 
Cover    

0.00     
(0.00)  

R2 0.05 0.46 0.48 0.48 0.52 
Observations 145,453 145,453 145,453 145,453 145,453 
Panel B: PRISM Data 
Shannon 

index 
-3.60 * ** -2.63 * ** -2.63 * ** -2.99 * ** -2.63 * ** 
(1.05) (0.92) (0.92) (0.96) (0.92) 

Tree Canopy 
Cover    

0.00     
(0.00)  

R2 0.06 0.45 0.48 0.48 0.52 
Observations 149,328 149,328 149,328 149,328 149,328 

Note: Table 3 provides regression results for the daily maximum temperature. 
The maximum temperature is reported in degrees Fahrenheit. Shannon-Wiener 
index is used as the measure of urban forest diversity in all regressions. Results 
reflect the use of weather station data from National Centers for Environmental 
Information (n.d.) in Panel A and PRISM Climate Group (2004) in Panel B. 
Column 5 controls for percent tree canopy cover gathered from National Land 
Cover Database (2012). Tree canopy cover is the percent cover for each ZIP code. 
Column 5 controls for tree canopy cover gathered from National Land Cover 
Database (2012). Each regression includes a constant that is not reported. 
Standard errors are clustered by 3-digit ZIP code and reported in parentheses. 
* ** p < 0.01, * * p < 0.05, * p < 0.1 

Fig. 3. Street tree biodiversity and heat across California’s four summer 
months. Note: Fig. 3 reflects the relationship between temperature outcome 
and Shannon-Wiener index by month. Shannon-Wiener index data gathered 
from Love et al. (2022). Temperature outcomes sourced from National Centers 
for Environmental Information. Temperature is recorded in degrees Fahrenheit. 
Each line plots the predicted values from a regression that regresses tempera
ture on the Shannon-Wiener index for a subset of the data. For example, Panel A 
month 6 plots the predicted values that come from a regression of maximum 
temperature on the Shannon-Wiener index for the month of June. The slope of 
the line corresponds to the coefficient on the Shannon-Wiener index in the 
regression and the intercept is the regression intercept. 
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greater biodiversity. There is an estimated increase of 1.10℉ for every 
unit increase in Shannon-Wiener index and 0.70℉ when tree canopy 
cover is included. These results were consistent across all model speci
fications, and when using weather station and PRISM data. Panel B of 
Fig. 3 illustrates the relationship between Shannon-Wiener index and 
daily minimum temperature during California’s four summer months. 
The minimum temperature, however, shows different results than the 
linear models. We found that higher minimum temperature with greater 
tree diversity is driven by the month of September. 

The ZIP codes within our study area represented a wide range of tree 

sizes and foliage types, making our results more robust. Most trees are 
deciduous or evergreen (Fig. 4). The mean tree DBH was 11 in. with a 
standard deviation of eight inches (Fig. 5, A). The tree height mean was 
24 feet with a standard deviation of 13 feet (Fig. 5, B). 

3.1. Robustness of results 

Table 5 compares the results of the two diversity indices. Panel A 
uses the Shannon-Wiener index and includes a summary of the results 
using our primary measure from Tables 2, 3 and 4. Panel B uses the TD- 
50 index. Each panel compares two sets of fixed effects and the inclusion 
of canopy cover for each outcome. Across the two metrics, the direction 
of the estimated effect for each outcome remains the same when tree 
canopy cover is included. 

4. Discussion 

In this study, we found that ZIP codes with higher tree species di
versity were associated with lower daily maximum temperatures and a 
lower probability that a given day will exceed 90℉, an important 
temperature threshold beyond which human health is negatively 
affected. In contrast, we found that urban forest diversity is positively 
associated with minimum temperatures, suggesting that diverse forests 
more effectively insulate urban areas at night relative to less diverse 
forests. By implementing a series of controls and fixed effects designed to 
isolate the effect of tree species diversity on daily temperatures, our 
results suggest that, independent of canopy cover, diverse urban forests 
can contribute to mitigating high daytime temperatures while insulating 
urban areas at night. These results were robust across two different 
measures of biodiversity and two sources of daily temperature data. 
Below we discuss potential mechanisms to explain the patterns detected 
in this study. Finally, we discuss how our findings may help guide pol
icies designed to address the urban heat island effect by increasing the 
cooling capacity of urban forests. 

4.1. Why might biodiversity help cool urban areas? 

Several mechanisms may explain why ZIP codes with more diverse 
urban forests are associated with lower summer maximum tempera
tures. We discuss five primary candidates. First, increasing tree diversity 
may increase the likelihood that species with greater cooling capacities 

Table 4 
Daily Temperature Minimum.   

No fixed 
effects 

3-digit 
ZIP code 
fixed 
effects 

3-digit ZIP 
code and 
month 
fixed 
effects 

3-digit ZIP 
code and 
month fixed 
effects 
(controls 
for tree 
canopy) 

3-digit 
ZIP by 
month, 
year- 
month FE 

Panel A: Weather Station Data 
Shannon 

index 
-0.13 1.10 * ** 1.10 * ** 0.70 * 1.10 * ** 
(0.85) (0.40) (0.40) (0.40) (0.40) 

Tree Canopy 
Cover    

0.00     
(0.00)  

R2 0.00 0.42 0.47 0.48 0.53 
Observations 145,377 145,377 145,377 145,377 145,377 
Panel B: PRISM Data 
Shannon 

index 
-0.16 0.61 * * 0.61 * * 0.50 * * 0.61 * * 
(0.78) (0.25) (0.25) (0.23) (0.25) 

Tree Canopy 
Cover    

0.00     
(0.00)  

R2 0.00 0.46 0.53 0.53 0.60 
Observations 149,328 149,328 149,328 149,328 149,328 

Note: Table 4 provides regression results for the daily minimum temperature. 
The minimum temperature is reported in degrees Fahrenheit. Shannon-Wiener 
index is used as the measure of urban forest diversity in all regressions. Re
sults reflect the use of weather station data from National Centers for Environ
mental Information (n.d.) in Panel A and PRISM Climate Group (2004) in Panel 
B. The use of fixed effects is shown in each column header. Column 5 controls for 
percent tree canopy cover gathered from National Land Cover Database (2012). 
Tree canopy cover is the percent cover for each ZIP code. Each regression in
cludes a constant that is not reported. Standard errors are clustered by 3-digit 
ZIP code and reported in parentheses. * ** p < 0.01, * * p < 0.05, * p < 0.1. 

Fig. 4. Foliage Type of California’s Urban Trees. Note: Fig. 4 reflects the foliage-type of the trees within the 136 ZIP Codes from the CUF Inventory (Love 
et al., 2022). 
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are present in the urban forest, i.e., the sampling effect hypothesis 
(Cardinale et al., 2006). Tree species vary markedly in their transpira
tional cooling capacity, canopy sizes, and capacities to cool under 
various environmental conditions (Rahman et al., 2019; Rana and Fer
rara, 2019). In ZIP codes with high levels of tree diversity, there may be 
a greater portion of trees with greater cooling capacities, which would 
increase cooling provided by trees independent of canopy cover. 

A second pathway may be that species diversity may also reflect 
patterns in structural diversity, which could influence the cooling ca
pacities of urban forests. This depends on the particular species present 
in the forest, and if their shapes and characteristics are similar across 
species. California’s urban forests are diverse both in species and in 
structure and characteristics, with species that are evergreen, deciduous, 
coniferous and palms as well as a wide range of DBH and heights rep
resented in the urban forests (Love et al., 2022). Previous work has 
demonstrated that structurally diverse, multi-layered urban forests are 
more effective at reducing urban heat island effects than structurally 
homogeneous forests (Zhang et al., 2013). Structurally diverse forests 
can intercept or reflect solar radiation at multiple vegetation layers 
rather than just the top-most canopy layer, which can help limit the 
amount of radiation that is absorbed by hard surfaces. If diverse forests 
are also structurally diverse forests, this may help explain why we 

observed lower summer maximum temperatures in ZIP codes with 
higher urban forest biodiversity. In this work, we confirmed that vari
ance in structural characteristics may not be the only reason that 
increased biodiversity results in lower maximum temperatures. DBH 
contributed significantly to the model with and without inclusion of the 
Shannon-Wiener index, while height did not. The robustness of the 
Shannon-Wiener coefficient to inclusion of variance in height and 
diameter, and the negative coefficient on variance in diameter, suggest 
that structural differences may contribute to lower temperatures. Future 
work on this topic could further explore the mechanisms driving the 
patterns observed in this study relating higher urban tree biodiversity to 
lower maximum temperatures. 

A third possible explanation is that more diverse urban forests are 
more resilient to stress. For a tree to provide ecosystem services, it must 
be alive and healthy (Livesly et al., 2016). To create resilient urban 
forests, urban foresters often focus on increasing the diversity of their 
urban forest by planting many different tree species (Ordóñez and 
Duinker, 2014; Brandt et al. 2016; Ordóñez and Duinker, 2015; Abeyta 
et al., 2013). Having a diverse urban forest minimizes overall tree loss to 
stressors such as climate related changes in temperature or storms, as 
well as pests (Huff et al., 2020; Nitschke et al., 2017; Paquette et al., 
2021; Raupp et al., 2006; Wood and Dupras, 2021). The primary 

Fig. 5. Structural Characteristics of California’s Urban Trees. Note: Fig. 5 reflects the structural characteristics of the trees within the 136 ZIP Codes from the 
CUF Inventory (Love et al., 2022). A) The DBH of the trees. The line reflects the mean at 11 in.. (n = 1041,864) B) The height of the trees. The line reflects the mean 
at 24 feet. (n = 760,870). 

Table 5 
Robustness.   

Over 90℉ Indicator Maximum Temperature Minimum Temperature  

3-digit ZIP code and month 
fixed effects (controls for 
tree canopy) 

3-digit ZIP by 
month, year- 
month FE 

3-digit ZIP code and month 
fixed effects (controls for 
tree canopy) 

3-digit ZIP by 
month, year- 
month FE 

3-digit ZIP code and month 
fixed effects (controls for 
tree canopy) 

3-digit ZIP by 
month, year- 
month FE 

Panel A: Shannon-Wiener index 
Shannon index -0.07 * ** -0.07 * ** -2.24 * ** -2.40 * ** 0.70 * 1.10 * ** 

(0.02) (0.02) (0.65) (0.67) (0.40) (0.40) 
Tree Canopy 

Cover 
0.00  0.00  0.00  
(0.00)  (0.00)  (0.00)  

R2 0.35 0.38 0.48 0.52 0.48 0.53 
Panel B: TD-50 index 
TD-50 -0.02 * ** -0.02 * ** -0.48 * ** -0.53 * ** 0.21 * 0.22 * * 

(0.005) (0.005) (0.15) (0.15) (0.11) (0.11) 
Tree Canopy 

Cover 
-0.0001  -0.000  -0.02  
(0.0005)  (0.000)  (0.02)  

R2 0.35 0.38 0.48 0.52 0.47 0.53 
Observations 145,453 145,453 145,453 145,453 145,377 145,377 

Note: Table 5 provides regression results for the three outcome variables: over 90℉ indicator, maximum temperature, minimum temperature. Each outcome variable 
includes two regressions with the same use of fixed effects which are shown in the column header. Maximum and minimum temperatures are reported in degrees 
Fahrenheit. All regressions reflect use of weather station data from National Centers for Environmental Information (n.d.). Results in Panel A summarize regressions 
using Shannon-Wiener index as the measure of urban forest diversity and TD-50 is used in Panel B. The use of fixed effects is shown in each column header. Columns 
one, three, and five include a control for percent tree canopy cover gathered from National Land Cover Database (2012). Each regression includes a constant that is not 
reported. Standard errors are clustered by 3-digit ZIP code and reported in parentheses. * ** p < 0.01, * * p < 0.05, * p < 0.1. 
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mechanism by which trees provide cooling is through interception of 
solar radiation (shading) and transpirational cooling, and trees with 
larger canopies and a higher leaf density are more effective at cooling 
(Tamaskani Esfehankalateh et al., 2021; Tsoka et al., 2021). Having 
more living and healthy trees results in a cooler urban forest. Having 
more diverse urban forests could result in having a higher proportion of 
trees that survive stressors and continue to cool cities. 

Fourth, this pattern could be a case of reverse causality where the 
underlying temperature drives diversity rather than diversity increasing 
cooling services in urban environments. In other words, the patterns 
detected here may reflect species-climate relationships, where more tree 
species are capable of growing in ZIPs with less extreme summer tem
peratures. While this may be true, it is unlikely the driver of the patterns 
detected in this study. When evaluating the relationship between our 
temperature outcome variables and biodiversity, some specifications 
included a three-digit ZIP code fixed effect, which controlled for 
geographic variation in underlying climatic conditions at the three-digit 
ZIP code level. When fixed effects are included in model specifications, 
we still detected a cooling effect in those ZIPs with higher urban forest 
biodiversity. With these fixed effects, the patterns detected in this study 
suggest that there were fewer days over 90◦F and cooler maximum 
temperatures in areas with more diverse urban forests independent of 
baseline temperatures among ZIPs. 

Finally, the pattern might be due to omitted variable bias. One var
iable our study did not account for is if there is a relationship between 
urban forest diversity and blue-green spaces in urban areas. The rela
tionship between temperature mitigation and quantity and location of 
blue-green spaces is complicated. Many studies have shown that both 
blue and green spaces can contribute to urban cooling (Yang et al., 2020; 
Yu et al., 2020; Asgarian et al., 2015; Taleghani, 2018; Sun and Chen, 
2012; Akbari and Kolokotsa, 2016). Our study controls for green space 
by including overall canopy cover as a predictor in our models. How
ever, we do not account for blue spaces. It is possible that blue spaces 
may be sites of higher diversity, although that trend is less clear for 
planted urban trees (Hassall and Anderson, 2015; Hill et al., 2017). Our 
data includes public tree inventories that vary in proximity to blue 
space, some without any proximal blue spaces. The effect of how blue 
spaces cool urban areas is complex; studies have found that the size and 
location of the water body predicts how far out from the water body the 
cooling effect can be felt (Yu et al., 2020; Murakawa et al., 1991; Sun 
and Chen, 2012; Hathway and Sharples, 2012, Gunawardena et al., 
2017). Future studies should more deeply explore the relationship be
tween planted urban tree diversity and blue space to test if some of the 
effect of tree diversity on temperature mitigation could be due to a 
relationship with blue space as well as green space. 

Unexpectedly, we found that increased tree diversity was associated 
with warmer nighttime (i.e., minimum) summer temperatures (Table 4), 
which opposes the pattern we detected between tree diversity and 
maximum summer temperatures. These results together suggest that 
diverse forests act as buffers against drastic changes in daily tempera
ture. Why might this be the case? Trees do not provide cooling services 
at night either through shading or transpirational cooling, which limits 
their ability to actively cool temperatures at night regardless of di
versity. There has been work that shows that tall trees trap heat 
(Wujeska-Klause and Pfautsch, 2020), but whether or not diversity in 
species drives warmer temperatures is unknown and should be explored 
in future work.These results support previous work that has demon
strated that the greatest urban forest cooling occurs during the hottest 
parts of both the day and the year (Hamada and Ohta, 2010; Wang et al., 
2021; Zhang et al., 2013), suggesting that cooling effects are strongest 
when temperatures are highest at multiple temporal scales (i.e., on daily 
and seasonal bases). 

4.2. Alternative measures of diversity 

The relationship between temperature and tree diversity are 

consistent across two diversity measures: the Shannon-Wiener and TD- 
50 diversity indices. These two metrics reflect diversity of urban for
ests through differing approaches. The coefficient of the Shannon- 
Wiener index reflects the estimated change from a one unit increase in 
the Shannon-Wiener index (Table 5, panel A). The coefficient of the TD- 
50 reflects the estimated change from one more species in that ZIP 
code’s top 50% of trees (Table 5, panel B). The direction of the effect for 
both measures can be interpreted similarly. In other words, a ZIP code 
with a higher TD-50 or Shannon-Wiener index is considered more 
diverse. Our results show the same pattern for the three outcomes using 
both indices. 

While the use of both metrics lead to similar results, the TD-50 index 
is a more intuitive metric because each unit increase corresponds to one 
more species of tree accounting for the top 50% of all trees in a given 
area in contrast to the relatively arbitrary units of Shannon-Wiener 
index. This makes the TD-50 index a useful metric of urban forest di
versity because it may help to facilitate communication between sci
entists and policy makers seeking to implement policy designed to set 
diversity targets. In addition, the TD-50 measure is highly correlated 
with the Shannon-Wiener index (Love et al., 2022), making it a robust 
metric of diversity. 

5. Conclusion 

Global rising temperatures and the subsequent threat to human 
health, environment, and sustainability urges research into how to 
mitigate these effects. While the current literature on mitigating urban 
heat islands has reached a consensus on the effectiveness of tree canopy 
cover in reducing temperatures, the role of tree diversity is poorly un
derstood. This paper uses the most comprehensive and detailed data on 
the composition of California’s street trees to date to test whether urban 
forest diversity is correlated with lower temperatures in warm months. 
After controlling for average local weather patterns and total tree can
opy cover, we find that greater tree diversity is associated with fewer 
days above 90℉, a temperature threshold known to decrease human 
wellbeing. Biodiversity is associated with lower maximum temperatures 
but, surprisingly, higher minimum temperatures. This pattern is 
consistent with a mechanism where higher biodiversity is linked to 
greater variation in tree structure, leaf density, and leaf composition, 
which may buffer areas from extreme high temperatures but also 
possibly limit airflow at night, insulating urban areas. 

The results from this paper suggest that, in addition to canopy cover, 
tree diversity can be a useful tool in reducing the strain of high tem
peratures in cities in California. Both the current study and previous 
literature indicate that tree diversity may amplify the cooling effect of 
urban trees and, together, these studies can help urban foresters 
implement effective policies. For example, policies that aim to decrease 
the urban heat island effect could do so by setting higher urban forest 
diversity targets. Dead or dying trees could be replaced by a more 
diverse set of new species. This type of policy may be especially 
important in highly urbanized areas with limited area to expand the 
urban forest and where tree planting strategies can help optimize 
ecosystem services. 

Rising temperatures are predicted to increase the frequency and 
severity of heat waves which lead to increases in heat-related illness or 
death, as well as increase demand for air-conditioning. The results from 
the analysis indicate that biodiversity can serve as a tool in combating 
the effects of rising temperatures in urban areas. Public investments in 
street trees may have an equity component: publicly supported cooling 
services may help low-income households, which may be unable to in
crease energy spending on air conditioning in response to extreme heat. 

While the results from this paper are promising, they are only 
correlational and are limited by the use of cross-sectional tree data and 
macro-level weather station data. Although the analysis includes con
trols for local climate, relying on variation in biodiversity within a three- 
digit ZIP code, like many correlational strategies the results could be 
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explained by reverse causality. Another limitation is that, due to the 
nature of our tree data, these patterns could reflect bias in sampling 
effort of urban trees. Finally, there is a risk of confounding if our results 
are actually driven by cooling effects from blue-green spaces that may be 
correlated with tree diversity. Future research should use a causal 
inference framework, more micro-scale temperature data, additional 
data on weather conditions which may affect the ‘feel’ of air tempera
ture, as well as more detailed urban forest biodiversity and greenspace 
data. An experiment, simulation, or field study should also be consid
ered in future research. An experimental design would allow for a causal 
inference between biodiversity and urban heat island mitigation. In 
addition to improving the scope of tree and temperature data, a future 
study should include income and socioeconomic characteristics and 
address concerns about non-random tree-planting patterns. Applying 
these recommendations in future research would help improve the un
derstanding of how to move forward with policy in addressing the built 
environment, public health, and urban planning. 
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Ordóñez, C., Duinker, P.N., 2015. Climate change vulnerability assessment of the urban 
forest in three Canadian cities. Clim. Change 131 (4), 531–543. https://doi.org/ 
10.1007/s10584-015-1394-2. 

Paquette, A., Sousa-Silva, R., Maure, F., Cameron, E., Belluau, M., Messier, C., 2021. 
Praise for diversity: a functional approach to reduce risks in urban forests. Urban 
For. Urban Green. 62, 127157 https://doi.org/10.1016/j.ufug.2021.127157. 

Park, R.J., 2022. Hot Temperature and High-Stakes Performance. J. Hum. Resour. 57 (2), 
400–434. https://doi.org/10.3368/jhr.57.2.0618-9535R3. 

Perkins, S.E., Alexander, L.V., Nairn, J.R., 2012. Increasing frequency, intensity and 
duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39 (20), 
2012GL053361 https://doi.org/10.1029/2012GL053361. 

PRISM Climate Group, Oregon State University. (2004). PRISM Climate Data [dataset]. 
〈http://prism.oregonstate.edu〉. 

R. Core Team. (2022). R: A language and environment for statistical computing [Computer 
software]. R Foundation for Statistical Computing. 〈https://www.R-project.org/〉. 

Rahman, M.A., Moser, A., Rötzer, T., Pauleit, S., 2019. Comparing the transpirational 
and shading effects of two contrasting urban tree species. Urban Ecosyst. 22 (4), 
683–697. https://doi.org/10.1007/s11252-019-00853-x. 

Rana, G., Ferrara, R.M., 2019. Air cooling by tree transpiration: a case study of Olea 
europaea, Citrus sinensis and Pinus pinea in Mediterranean town. Urban Clim. 29, 
100507 https://doi.org/10.1016/j.uclim.2019.100507. 

Raupp, M., Cumming, A., Raupp, E., 2006. Street Tree Diversity in Eastern North 
America and Its Potential for Tree Loss to Exotic Borers. Arboric. Urban For. 32 (6), 
297–304. https://doi.org/10.48044/jauf.2006.038. 

SelecTree. (2022). SelecTree: A Tree Selection Guide [Web Application]. 〈https://selectree. 
calpoly.edu/〉. 

Stepner, M. (2013). BINSCATTER: Stata module to generate binned scatterplots [Computer 
software]. 〈https://EconPapers.repec.org/RePEc:boc:bocode:s457709〉. 

Sun, R., Chen, L., 2012. How can urban water bodies be designed for climate adaptation? 
Landsc. Urban Plan. 105 (1–2), 27–33. https://doi.org/10.1016/j. 
landurbplan.2011.11.018. 

Taleghani, M., 2018. Outdoor thermal comfort by different heat mitigation strategies- a 
review. Renew. Sustain. Energy Rev. 81, 2011–2018. https://doi.org/10.1016/j. 
rser.2017.06.010. 

Tamaskani Esfehankalateh, A., Ngarambe, J., Yun, G.Y., 2021. Influence of tree canopy 
coverage and leaf area density on urban heat island mitigation. Sustainability 13 
(13), 7496. https://doi.org/10.3390/su13137496. 

Tsoka, S., Leduc, T., Rodler, A., 2021. Assessing the effects of urban street trees on 
building cooling energy needs: The role of foliage density and planting pattern. 
Sustain. Cities Soc. 65, 102633 https://doi.org/10.1016/j.scs.2020.102633. 

Wang, X., Dallimer, M., Scott, C.E., Shi, W., Gao, J., 2021. Tree species richness and 
diversity predicts the magnitude of urban heat island mitigation effects of 
greenspaces. Sci. Total Environ. 770, 145211 https://doi.org/10.1016/j. 
scitotenv.2021.145211. 

White, C., 2017. The Dynamic Relationship between Temperature and Morbidity. 
J. Assoc. Environ. Resour. Econ. 4 (4), 1155–1198. https://doi.org/10.1086/ 
692098. 

Wood, S.L.R., Dupras, J., 2021. Increasing functional diversity of the urban canopy for 
climate resilience: Potential tradeoffs with ecosystem services? Urban For. Urban 
Green. 58, 126972 https://doi.org/10.1016/j.ufug.2020.126972. 

Wujeska-Klause, A., Pfautsch, S., 2020. The best urban trees for daytime cooling leave 
nights slightly warmer. Forests 11 (9), 945. https://doi.org/10.3390/f11090945. 

Yang, G., Yu, Z., Jørgensen, G., Vejre, H., 2020. How can urban blue-green space be 
planned for climate adaptation in high-latitude cities? A seasonal perspective. 
Sustain. Cities Soc. 53, 101932 https://doi.org/10.1016/j.scs.2019.101932. 

Yu, Z., Yang, G., Zuo, S., Jørgensen, G., Koga, M., Vejre, H., 2020. Critical review on the 
cooling effect of urban blue-green space: a threshold-size perspective. Urban For. 
Urban Green. 49, 126630 https://doi.org/10.1016/j.ufug.2020.126630. 

Zhang, Z., Lv, Y., Pan, H., 2013. Cooling and humidifying effect of plant communities in 
subtropical urban parks. Urban For. Urban Green. 12 (3), 323–329. https://doi.org/ 
10.1016/j.ufug.2013.03.010. 

P. Rendon et al.                                                                                                                                                                                                                                 

https://www.ncdc.noaa.gov/cdo-web/
https://doi.org/10.1016/j.landurbplan.2017.06.012
https://doi.org/10.1016/j.ufug.2020.126638
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1139/er-2013-0078
https://doi.org/10.1007/s10584-015-1394-2
https://doi.org/10.1007/s10584-015-1394-2
https://doi.org/10.1016/j.ufug.2021.127157
https://doi.org/10.3368/jhr.57.2.0618-9535R3
https://doi.org/10.1029/2012GL053361
http://prism.oregonstate.edu
https://www.R-project.org/
https://doi.org/10.1007/s11252-019-00853-x
https://doi.org/10.1016/j.uclim.2019.100507
https://doi.org/10.48044/jauf.2006.038
https://selectree.calpoly.edu/
https://selectree.calpoly.edu/
https://EconPapers.repec.org/RePEc:boc:bocode:s457709
https://doi.org/10.1016/j.landurbplan.2011.11.018
https://doi.org/10.1016/j.landurbplan.2011.11.018
https://doi.org/10.1016/j.rser.2017.06.010
https://doi.org/10.1016/j.rser.2017.06.010
https://doi.org/10.3390/su13137496
https://doi.org/10.1016/j.scs.2020.102633
https://doi.org/10.1016/j.scitotenv.2021.145211
https://doi.org/10.1016/j.scitotenv.2021.145211
https://doi.org/10.1086/692098
https://doi.org/10.1086/692098
https://doi.org/10.1016/j.ufug.2020.126972
https://doi.org/10.3390/f11090945
https://doi.org/10.1016/j.scs.2019.101932
https://doi.org/10.1016/j.ufug.2020.126630
https://doi.org/10.1016/j.ufug.2013.03.010
https://doi.org/10.1016/j.ufug.2013.03.010

	Street tree diversity and urban heat
	1 Introduction
	2 Empirical analysis
	2.1 Data
	2.1.1 Urban forests characteristics
	2.1.2 Temperature data: weather stations
	2.1.3 Temperature data: PRISM

	2.2 Model specification

	3 Results
	3.1 Robustness of results

	4 Discussion
	4.1 Why might biodiversity help cool urban areas?
	4.2 Alternative measures of diversity

	5 Conclusion
	Author statement
	Declaration of Competing Interest
	Appendix A Supporting information
	References


